A Backward Stable Hyperbolic QR Factorization Method for Solving Indefinite Least Squares Problem
نویسنده
چکیده
We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute the solution by solving several triangular systems. We give the first order error analysis to show that the method is backward stable. The method is more efficient than the backward stable method proposed by Chandrasekaran, Gu and Sayed.
منابع مشابه
Solving the Indefinite Least Squares Problem by Hyperbolic QR Factorization
The indefinite least squares (ILS) problem involves minimizing a certain type of indefinite quadratic form. We develop perturbation theory for the problem and identify a condition number. We describe and analyze a method for solving the ILS problem based on hyperbolic QR factorization. This method has a lower operation count than one recently proposed by Chandrasekaran, Gu, and Sayed that emplo...
متن کاملThe Equality Constrained Indefinite Least Squares Problem : Theory and Algorithms ∗ †
We present theory and algorithms for the equality constrained indefinite least squares problem, which requires minimization of an indefinite quadratic form subject to a linear equality constraint. A generalized hyperbolic QR factorization is introduced and used in the derivation of perturbation bounds and to construct a numerical method. An alternative method is obtained by employing a generali...
متن کاملA Stable and Efficient Algorithm for the Indefinite Linear Least-Squares Problem
We develop an algorithm for the solution of indefinite least-squares problems. Such problems arise in robust estimation, filtering, and control, and numerically stable solutions have been lacking. The algorithm developed herein involves the QR factorization of the coefficient matrix and is provably numerically stable.
متن کاملRow-Wise Backward Stable Elimination Methods for the Equality Constrained Least Squares Problem
It is well known that the solution of the equality constrained least squares (LSE) problem minBx=d ‖b−Ax‖2 is the limit of the solution of the unconstrained weighted least squares problem min x ∥∥ [ μd b ] − [ μB A ] x ∥∥ 2 as the weight μ tends to infinity, assuming that [B A ] has full rank. We derive a method for the LSE problem by applying Householder QR factorization with column pivoting t...
متن کاملAccuracy and Stability of the Null Space Method for Solving the Equality Constrained Least Squares Problem
The null space method is a standard method for solving the linear least squares problem subject to equality constraints (the LSE problem). We show that three variants of the method, including one used in LAPACK that is based on the generalized QR factorization, are numerically stable. We derive two perturbation bounds for the LSE problem: one of standard form that is not attainable, and a bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003